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Abstract We consider independent edge percolation models on Z, with edge occupation
probabilities

p{x,y} =
{

p if |x − y| = 1,

1 − exp{−β/ |x − y|2} otherwise.

We prove that oriented percolation occurs when β > 1 provided p is chosen sufficiently
close to 1, answering a question posed in Newman and Schulman (Commun. Math. Phys.
104:547, 1986). The proof is based on multi-scale analysis.

Keywords Long-range edge percolation model · Oriented percolation · Multi-scale
analysis · Dynamical renormalization

1 Introduction

It is well known that 1/r2 gives the “critical” falloff for percolation in one-dimensional long
range independent edge percolation models. Moreover, for the one dimensional Fortuin–
Kasteleyn (FK) random cluster model with weighting factor κ ≥ 1 and edge occupation

D.H.U. Marchetti (�)
Instituto de Física, Universidade de São Paulo, Caixa Postal 66318, 05314-970 São Paulo, SP, Brasil
e-mail: marchett@if.usp.br

V. Sidoravicius
Centrum Wiskunde & Informatica (CWI), Science Park 123, 1098 XG Amsterdam, Netherlands

V. Sidoravicius
Instituto de Matemática Pura e Aplicada (IMPA), Estrada Dona Castorina 110, Jardim Botânico,
22460-320 Rio de Janeiro, RJ, Brasil
e-mail: vladas@impa.br

M.E. Vares
Centro Brasileiro de Pesquisas Físicas (CBPF), Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro,
RJ, Brasil
e-mail: eulalia@cbpf.br

mailto:marchett@if.usp.br
mailto:vladas@impa.br
mailto:eulalia@cbpf.br


942 D.H.U. Marchetti et al.

probabilities of the form p{x,y} = f (|x − y|), with r2 f (r) → β > 0 as r → +∞, it is known
that for fixed f (j) < 1, j ≥ 2 and varying p = f (1), the value β∗ = 1 is critical in the
sense that for β ≤ 1 percolation cannot occur unless p = 1 (see [1]), while for β > 1 there
is percolation provided p is sufficiently close to one (see [11] and [14]). Such results are
important in the description of the phase transition diagram for the one-dimensional long
range Ising models studied earlier by Fröhlich and Spencer in [8] and for the corresponding
Potts models [2, 11, 14], as these spin systems can be constructed by a random coloring of
the clusters in the FK model with κ = 2, or κ > 2 integer, respectively. For the particular
case of independent edge percolation models (κ = 1) earlier results were obtained in [16],
where it was proven that β∗ ≤ 1 in this case, and that oriented percolation occurs when
limx→∞ xs f (x) > 0 for some 1 < s < 2. The question whether oriented percolation occurs
in the boundary case s = 2 remained unanswered. Theorem 1.1 below gives an affirmative
answer; the result is stated for the particular example of edge probabilities in (1.1) below,
and oriented percolation is shown when β > 1 and p < 1 is sufficiently close to one. The
proofs can be easily adapted to include any f (·) satisfying limx→∞ x2 f (x) > 1. In this
sense β∗ = 1 remains critical also for oriented percolation.

Our main result (Theorem 1.1) deals with the independent percolation model. On the
other hand, known FKG inequalities and the above mentioned representation yield at once
an application to the long range Ising (and Potts) models, which we state as Corollary 1.2.
This is the reason for the preliminaries on this more general context of FK measures.

Preliminaries Consider the infinite complete graph with set of vertices V = Z and set of
edges E = {{x, y}, x �= y, x, y ∈ Z}, and let � = {0,1}E. One-dimensional long-range FK
random cluster models with weighting parameter κ ≥ 1 are probability measures on σ(�),
the usual product σ -algebra on �. To define them, let us first fix ν the Bernoulli product
measure on �, with ν(ω{x,y} = 1) = p{x,y} given by

p{x,y} =
{

p if |x − y| = 1,

1 − exp{− β

|x−y|2 } otherwise, (1.1)

where 0 < p < 1 and β > 0 are fixed parameters.

Notation We write q{x,y} = 1 −p{x,y}; for e = {x, y} we will write pe instead of p{x,y}, and
say that e “is open” if ωe = 1. The length of an edge e = {x, y} is |x − y|.

Finite Volume FK Measures Given I ⊂ Z, consider E(I ) = {{x, y} ∈ E : x, y ∈ I }, �I =
{0,1}E(I ) and �̄I = {0,1}E\E(I c), where I c = Z\I . Assume that |I | < ∞. The corresponding
finite volume free FK-measure is the probability measure μ

f

κ,I on �I given by

μ
f

κ,I (A) =
∫

A
κCI (ω)νI (dω)∫

�I
κCI (ω)νI (dω)

, A ⊂ �I , (1.2)

where νI is the restriction of ν to �I , and CI (ω) denotes the number of disjoint connected
components in the graph determined by ω ∈ �I (i.e. the graph with vertices in I whose
edges coincide with those e such that ωe = 1). The corresponding wired FK-measure μw

κ,I is
a probability measure on �̄I , defined similarly as in (1.2), replacing νI by ν̄I , the restriction
of ν to �̄I (so that A ∈ σ(�̄I ) the usual product sigma algebra), and CI (ω) by C̄I (ω), the
number of disjoint connected components intersecting I in the graph with vertices in Z

determined by ω̄, the configuration which extends ω ∈ �̄I by setting ω̄e = 1 for all e ∈
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E(I c). Thus we may see μw
κ,I as a measure on �, concentrated on the configurations for

which all edges in E(I c) are open. Analogously, we may think of μ
f

κ,I as a probability
measure on �, concentrated on the configurations ω such that ωe = 0 for any e ∈ E \ E(I ).
Keeping this in mind we have the following well-known property.

The Infinite Volume Limit On � we consider the usual partial order: ω ≤ ω′ if ωe ≤ ω′
e for

each e ∈ E. By the FKG inequality (see [2, 5]), one has

μ
f

κ,I (g) ≤ μ
f

κ,I ′(g) ≤ μw
κ,I ′(g) ≤ μw

κ,I (g)

for any finite intervals I ⊂ I ′ ⊂ Z, and any non-decreasing continuous function g : � → R.
Thus, as I ↗ Z the limit measures μf

κ and μw
κ exist. Moreover, μf

κ ≤ μw
κ in FKG sense.1

If κ = 1, trivially μf
κ = μw

κ = ν. Since p{x,y} ≡ f (|x − y|) the measures μf
κ and μw

κ are
translation invariant; both are ergodic.

For a more general and complete discussion on the construction of random cluster mea-
sures, including issues in the infinite volume limit for general external conditions, see e.g.
[9, 10] (focused mostly in short range models). This is particularly delicate when 0 < κ < 1.
Fix ω ∈ �. An alternating sequence of vertices and edges x = x1, e1, x2, . . . , xn−1, en−1, xn =
y, n ≥ 1, is called a path connecting x to y, and we say that the path is open if
ωei

≡ ω{xi ,xi+1} = 1, 1 ≤ i ≤ n − 1. We say that C ⊂ Z is connected if for any two dis-
tinct vertices x, y in C there exists an open path π connecting them. A maximal connected
set is called an open cluster, and Cx(ω) denotes the open cluster containing x ∈ Z (we
write Cx(ω) = {x} if ω{x,y} = 0, for all y ∈ Z\ {x}). A path π = (x1, . . . , xn) connecting x to
y, x < y, is called oriented if x1 = x < x2 < · · · < xn−1 < xn = y, and we write x � y when
there is an open oriented path connecting x to y. Analogously we define C+

x = {y : x � y},
and the event

[x � ∞] = [|C+
x | = ∞].

We are ready to state our main result.

Theorem 1.1 For any β > 1, there exist 0 < p0 < 1 such that, if p > p0, then

ν(0 � ∞) ≥ 1 − ε (1.3)

holds with ε = ε(p) ↘ 0 as p ↗ 1.

Remark 1 Let κ > 1. The statements in Theorem 4.1 of [2] imply that ν ≤ μf
κ in FKG sense,

provided the probabilities p{x,y} in μf
κ are given by (1.1) with β replaced by β ′ ≥ κβ . Hence

the above result extends to μf
κ when β > κ . Since μf

κ ≤ μw
κ , the same holds as well for μw

κ .

Remark 2 Theorem 1.1 should indeed extend exactly to the FK random cluster model with
κ > 1. The authors believe that using an algebraic implementation of the multiscale analysis
developed in the present work, one should be able to obtain this extension. Nevertheless, for
the moment we do not have a full proof ([15]).

1That is μ ≤ μ′ if μ(g) ≤ μ′(g) for any g continuous and increasing.
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Some Related Problems The type of questions treated here has various sources of inter-
est and we mention only a couple of them, which have to do with our own motivations.
Consider the following physical problem: take the one-dimensional Ising model with pair
interactions, the couplings decaying as the inverse of square of the distance between ver-
tices, at inverse temperature β > 1; this is the model studied by Fröhlich and Spencer ([8]),
for which a phase transition was established. Take now the finite box [−L,L] and assume
the Dobrushin boundary conditions, i.e. all spins in (−∞,−L] will be taken as +1, and all
spins in [L,+∞) will be taken as −1. What can we say about the behaviour of this model
when L → ∞? Is there any sort of well defined interface? This might require a direct analy-
sis in terms of the spin system, but it leads to a more general question for the FK model,
regarding the behavior of connected components of each boundary conditioned not to touch
each other. (Recall that by a random coloring of the clusters, the FK model gives origin to a
spin system which interpolates the independent percolation model (κ = 1), the Ising model
(κ = 2) and the q–states Potts model (κ = q > 2, integer) at inverse temperature β and in-
teraction J{x,y} = β−1 log( 1

1−p{x,y} ), the representation being possible for some (but not all)
boundary conditions. For details see [2, 6]). Though we still do not fully understand this
problem which remains unsolved, our results might shed some light on it. In [4], the au-
thors obtain a more precise description for very low temperatures, using cluster expansion
techniques.

An interesting corollary of Theorem 1.1 is as follows. Consider the Ising model (with
±1-valued spins) on Z+, with interaction J{x,y} = |x − y|−2 if |x − y| ≥ 2 and J{x,x+1} = J

at inverse temperature β . Let m
0,+
L (β) denote the average spin at the origin, with “one-sided”

(+) boundary conditions in [L,∞). By the above mentioned FK representation (see e.g. [2,
5, 11]), we have

m
0,+
L (β) = μ

wr

2,[0,L](0 ↔ +∞),

where μ
wr

2,[0,L] stands for the random cluster measure on {0,1}E(Z+) with κ = 2 and all the
edges {x, y} with x ≥ L and y ≥ L being open (wired on the right). Together with Remark 1
following Theorem 1.1, this yields the following

Corollary 1.2 For any β > 2, there exist 0 < p0 < 1 such that, if p > p0, then

lim
L→∞

m
0,+
L (β) ≥ μ

f

2,Z+(0 � ∞) ≥ ν(0 � ∞) ≥ 1 − ε

holds for ε = ε(J ) ↘ 0 as J ↗ ∞. Consequently, there exists a phase transition when the
thermodynamical limit on Z+ is taken with + boundary conditions on the right side.

Remark In the above corollary there is a little change of notation with respect to the previ-
ously mentioned FK measure: the measure μ

f

2,Z+ is considered here on {0,1}E(Z+).

It is also interesting to compare the result on oriented percolation and the previous corol-
lary with the somehow similar question on the multiplicity of Gibbs states for Markov chains
with infinite connections, where orientation appears naturally through the time direction.
Recently Johansson and Öberg [12] showed that if g is a regular specification and

vark(g) = sup{‖g(σ ) − g(σ ′)‖1 : σi = σ ′
i , i = 1, . . . , k},

then g admits a unique Gibbs measure whenever the sequence {vark(g)}+∞
k=1 is in 
2. This

tells, in particular, that there are no multiple limiting measures for chains with connections
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decaying as r−2, as in Example 1 in [12]. This contrasts with the two-sided Ising models
and, as our Theorem says, with percolation models. The understanding of Markov chains
with infinite connections in the non-uniqueness regime is still very poor, and it is known as
a notoriously difficult problem. There is strong evidence (see [3]) that multi-scale analysis
techniques analogous to those developed in this work could be turned into a robust tool to
study this question.

Heuristics of the Proof The proof relies on Fröhlich-Spencer multi-scale analysis ideas [7,
8], and we use the version developed in [13, 14]. In the next few paragraphs we outline the
scheme of the proof, and comment on some key ideas, avoiding most of consuming technical
points. Our goal here is only to give a very schematic and approximate picture, postponing
precise formulations (which tend to be quite involved) to later in the text.

The Goal We look for an event of positive probability, whose occurrence implies not only
the existence of an infinite open component, but also guarantees the presence of an oriented
infinite open path. Essentially, we will construct such an event, and show that it has positive
probability. Our key estimate will be: if β > 1, we can find δ > 0, δ′ < 1 and p sufficiently
close to 1, so that

ν(∃open path π = (x1, e1, . . . , xn) : x1 ≤ −L + Lδ′
, xn ≥ L − Lδ′

,0 < xi − xi−1 ≤ Lδ′
,

∀i ) ≥ 1 − 2L−δ (1.4)

for L = lk as defined below and any k ≥ 1, l1 being sufficiently large, and where ν stands
for the product measure defined before. We will have little control on how close to one p

has to be (or, equivalently, on how large we need l1).

Scales We choose super-exponentially fast growing scales. Given 1 < α < 2, l0 = 1 and l1
an integer sufficiently large, let

lk = �lα−1
k−1 �lk−1, k = 2,3, . . . , (1.5)

where as usual �z� = max{n ∈ N : n ≤ z}. We will use the so-called dynamical blocking
argument, where the size and location of blocks2 will be defined along the procedure and
will depend on the configuration at lower scales. Still, the length of each block I (k) of the
k-th level (called k-block) will be of order lk . More precisely, we shall see that lk − 2l

α′/α
k −

6lk−1 ≤ |I (k)| ≤ 3lk + 6lk−1, for suitable 1 < α′ < α. (In particular, |I (k)| � l
α′/α
k+1 � lk+1, if

k ≥ 1 and l1 is large.)

Defected and Good Blocks Further we will use the following recursive definition of “de-
fected” block. Fix 1 < α′ < α to be specified later.

(1) We say that the 0-block [i, i + 1] is defected if the corresponding nearest neighbor
edge {i, i + 1} is closed; otherwise the 0-block is said to be good and the open nearest
neighbor path from i to i + 1 is called a 0–pedestal;

(2) For k ≥ 1, a k-block I (k) = [s, s ′] is defected if either it contains two or more defected
(k − 1)-blocks, or it contains only one defected (k − 1)-block [i, i ′] but there is no
open edge {a, a′} of length at most l

α′/α
k , with a ≤ i, i ′ ≤ a′, a ∈ ϒ, a′ ∈ ϒ ′, for some

(k − 1)-pedestals ϒ, ϒ ′ contained in I (k). Otherwise I (k) is called good.

2Successive blocks share an end-vertex.
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Thus, if a k-block [s, s ′] is good, then it contains an oriented open path going from s to s ′:
in the case it has no defected (k −1)-blocks, this path can be obtained by concatenating (k −
1)-pedestals of the good (k−1)-blocks which constitute the given k-block; if it has a (single)
defected (k − 1)-block, a similar concatenation yields an oriented open path going from s to
a, which is followed by an open edge {a, a′}, and then followed by another concatenation of
(k − 1)-pedestals of good (k − 1)-blocks, from a′ to s ′. In both cases, such path from s to s ′
will be called k–pedestal, and denoted by ϒ . The part of the cluster between a and a′ is again
disregarded in the future construction since we have little control on oriented connectivity
in this segment. The condition a′ − a ≤ l

α′/α
k will be crucial to guarantee that pedestals are

quite dense sets (within the corresponding good blocks), used to push the construction to
higher levels. Some care is needed when treating defects close to the boundary, which we
have disregarded here.

Strategy Being “defected” doesn’t necessarily imply that there is no oriented open path
connecting the endpoints of the block. Nevertheless, in order to avoid substantial technical
difficulties, we will follow two rules that simplify our construction:

(a) once a block is defected, we will assume the worst possible situation, namely it will be
considered as if all edges within this block were closed.

(b) once we have at least two defected (k − 1)-blocks within a k-block I , we will not try
to find connections within the k-block to fix its connectivity, but rather will “push the
problem to the next level”, and try to “jump over” this troubled block I by a longer edge
of length at most l

α′/α
k+1 , which starts at the pedestal of some good k-block to the left of I ,

and ends similarly on the right of I .

Estimates The scale l1 will be taken large enough, to be determined later depending on the
parameter β > 1 and the auxiliary parameters δ > 0, 1 < α′ < α < 2, to be chosen at the end
of Sect. 2 (see (2.17)–(2.20)). Once l1 is chosen, we shall take p so that:

p ≥
(

1 + (ln 2)5

128
l−δ−1
1

)−1

. (1.6)

For k ≥ 2, let I (k) be a k-block of length3 lk , which consists of Nk = lk/ lk−1 = �lα−1
k−1 �

blocks of level (k − 1), of length lk−1, and written as {I (k−1)
j }Nk

j=1. Assume that we have the
following estimate

ν(I
(k−1)
j is defected) ≤ l−δ

k−1, 1 ≤ j ≤ Nk.

Under the above assumptions, and if δ is chosen to satisfy (2.18), we see that

ν
(
∃1 ≤ i < j ≤ Nk : I

(k−1)
i , I

(k−1)
j are both defected

)
≤ 1

2
l−δ
k . (1.7)

When the defected I
(k−1)
i is unique, we assume for the moment that it stays at distance larger

than l
α′/α
k from the boundary of I (k). (Otherwise a sequence of local adjustments of blocks

will be needed, as we shall see in Sect. 2. The left- and right-most extremal blocks in our
volume are treated differently.) In this case let a and a′ be the end-vertices of the unique
defected block I

(k−1)
i . By our construction, there exists an oriented path starting from the

3This is not exact in general, but holds approximately, cf. (2.7).
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left boundary of I (k) and ending at the vertex a and another open oriented path starting
from vertex a′ and going to the right boundary of I (k). Both these paths are obtained by
concatenating pedestals of all good (k − 1)-blocks on the left side of the defected block
I

(k−1)
i and, respectively, on the right side. We denote these new left and right pedestals by

ϒ and ϒ ′, respectively. Given that I (k) has a unique defected I
(k−1)
i = [a, a′], and given the

pedestals ϒ and ϒ ′, one has the following upper bound for the conditional ν–probability of
not finding an open edge {x, y} with x ≤ a, a′ ≤ y, x ∈ ϒ, y ∈ ϒ ′ and y − x ≤ l

α′/α
k :

∏
x,y:x≤a <a′≤y,

y−x<l
α′/α
k

x∈ϒ,y∈ϒ ′

q{x,y} = exp

{
−

∑
x,y:x≤a <a′≤y,

y−x<l
α′/α
k

x∈ϒ,y∈ϒ ′

β

|x − y|2
}

≤ l
−β(1−η)(α′−1)

k−1 , (1.8)

where η = η(α,α′, l1) > 0, and can be taken arbitrarily small if l1 → ∞.
The precise statement and proof of the above estimate will be given in Lemma 2.1. It

requires some work, and in order to obtain it for suitable η = η(α,α′, l1) > 0 which can
be taken arbitrarily small if l1 → ∞ we will need to use certain geometric properties of
pedestals ϒ and ϒ ′, which propagate inductively from each level into the next one. Namely,
the pedestals are relatively dense sets (see (2.8) in Sect. 2) as the construction will show.
Using the above estimate, writing

{
I (k) has a unique defected (k − 1)-block [a, a′] and remains defected

}
= {

I (k) has unique defected (k − 1)-block [a, a′]}
∩{

there is no open edge {x, y} with x ≤ a, a′ ≤ y, x ∈ ϒ, y ∈ ϒ ′ and y − x ≤ l
α′/α
k

}
,

and since these events depend on disjoint sets of edges, we easily get:

ν
(
I (k) has a unique defected I

(k−1)
i and remains defected

) ≤ lα−1−δ
k−1 l

−β(1−η)(α′−1)

k−1 ≤ 1

2
l−δ
k ,

(1.9)
provided

β(1 − η)(α′ − 1) > (δ + 1)(α − 1). (1.10)

Since β > 1 and η = η(α,α′, l1) can be taken very small provided l1 is large, it will suffice
to suitably fix the parameters α and α′ (α′ close enough to α). This is done at the end of
Sect. 2.

Difficulties To carry on this scheme we have to go through several “unpleasant” and rather
involved points. The use of a dynamical blocking argument, with the blocks of a given level
depending not only on the size and location of lower level blocks, but also on their “status”
(defected or good), requires a rather tight bookkeeping. This is expressed through what we
call “itineraries”.

Once this is achieved, all necessary estimates follow along the scheme of [8, 13].
In the next section we define the blocks and describe the dynamic renormalization pro-

cedure, proving Theorem 1.1.
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2 Spatial Blocks (Dynamic Renormalization)

Notation For L ∈ N, assumed to be large, the construction will involve the configuration
ω restricted to the set of edges with both end-vertices in [−L,L], where [a, b] = [a, b] ∩
Z throughout.4 We write �L as a shorthand for �[−L,L]. Scales {lk}k∈N are defined in the
following way: l0 = 1, given β > 1 we shall take auxiliary parameters δ > 0, 1 < α′ < α < 2
chosen according to (2.17)–(2.20), l1 will be a suitably large integer and the parameter p < 1
will be taken sufficiently close to 1, depending on l1. Then we let lk be given by (1.5).

Further we denote x
(k)
j = j lk, j ∈ Z.

For the proof of Theorem 1.1 we may assume that L = lM , for some M ∈ N.
Throughout the text IA stands for the indicator function of an event A, i.e. IA(ω) = 1 or 0
according to ω ∈ A or not.

Decomposition of Events. Level 0 We set I
(0)
i = [i, i + 1]. They are called 0-blocks, and

for i such that I
(0)
i ⊂ [−L,L] we define the events:

G(I
(0)
i ) = {ω : ω{i,i+1} = 1}, B(I

(0)
i ) = {ω : ω{i,i+1} = 0}.

I
(0)
i is said to be defected when B(I

(0)
i ) occurs; otherwise it is said to be a good 0-block.

Level 1 Consider the intervals Ĩ
(1)
j = [j l1, (j + 1)l1] and for each j such that Ĩ

(1)
j ⊂

[−L,L] we define the following partition of �L:

G(Ĩ
(1)
j ) =

(j+1)l1−1⋂
i=j l1

G(I
(0)
i ),

Hi(Ĩ
(1)
j ) = B(I

(0)
i ) ∩

(j+1)l1−1⋂
s=j l1
s �=i

G(I (0)
s ) for i ∈ [j l1, (j + 1)l1 − 1],

(2.1)

H(Ĩ
(1)
j ) =

(j+1)l1−1⋃
i=j l1

Hi(Ĩ
(1)
j ),

B(Ĩ
(1)
j ) =

(
G(Ĩ

(1)
j ) ∪ H(Ĩ

(1)
j )

)c

,

where G stands for good, H for hopeful and B for bad, and accordingly, Ĩ
(1)
j is said to

be good (for given ω) if it contains no defected 0-blocks, “hopeful” if it contains only one
defected 0-block, and is said to be “bad” otherwise. When Hi(Ĩ

(1)
j ) occurs, I

(0)
i is called the

defected 0-block in Ĩ
(1)
j .

Adjustment Given ω, we first consider the set of all j ’s such that ω ∈ Hij (Ĩ
(1)
j ) ⊂ H(Ĩ

(1)
j )

and such that the index ij of the (unique) defected block I
(0)
ij

⊂ Ĩ
(1)
j verifies j l1 ≤ ij ≤

j l1 + �lα′/α
1 � − 1 (resp. (j + 1)l1 − �lα′/α

1 � ≤ ij ≤ (j + 1)l1 − 1).

4Except in the proof of Lemma 2.1.
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If this set is empty in both cases, we set I
(1)
j = Ĩ

(1)
j for all j ’s, and say that G(I

(1)
j ),

H(I
(1)
j ), B(I

(1)
j ) occurs, according to the occurrence of the corresponding G(Ĩ

(1)
j ), H(Ĩ

(1)
j ),

B(Ĩ
(1)
j ).

If this set is not empty, we take arbitrarily one of such indices j ; if Ĩ
(1)
j is not the interval

which contains −L (resp. L), to be treated in case 3) below, we check if Ĩ
(1)

j−1 (resp. Ĩ
(1)

j+1)

has a defected 0-block in the sub-interval [j l1 − 2�lα′/α
1 �, j l1] (resp. [(j + 1)l1, (j + 1)l1 +

2�lα′/α
1 � − 1]).

(1) If yes, then we consider a new interval I
(1)

j−1 = Ĩ
(1)

j−1 ∪ Ĩ
(1)
j (resp. I

(1)
j = Ĩ

(1)
j ∪ Ĩ

(1)

j+1) and

say that the event B(I
(1)

j−1) (resp. B(I
(1)
j )) occurs. (This is motivated by the fact that for

the chosen ω the new interval will contain at least two defected 0-blocks.)
(2) If not, then we consider two new intervals I

(1)

j−1 = [(j − 1)l1, j l1 − �lα′/α
1 �] and I

(1)
j =

[j l1 − �lα′/α
1 �, (j + 1)l1] (resp. I

(1)
j = [j l1, (j + 1)l1 + �lα′/α

1 �] and I
(1)

j+1 = [(j + 1)l1 +
�lα′/α

1 �, (j + 2)l1]). We say that H(I
(1)
j ) occurs, and that G(I

(1)

j−1), H(I
(1)

j−1), B(I
(1)

j−1) oc-

curs according to the occurrence of the corresponding event G(Ĩ
(1)

j−1), H(Ĩ
(1)

j−1), B(Ĩ
(1)

j−1)

(resp. we say that H(I
(1)
j ) occurs, and that G(I

(1)

j+1), H(I
(1)

j+1), B(I
(1)

j+1) occurs according

to the occurrence of the corresponding event G(Ĩ
(1)

j+1), H(Ĩ
(1)

j+1) B(Ĩ
(1)

j+1)). In this case

the adjustment moves the boundary “away” from the unique defected block in I
(1)
j , but

doesn’t change the number of the defected 0-blocks in the adjusted intervals.
(3) If the interval Ĩ

(1)
j under consideration is the leftmost (resp. the rightmost) interval in

[−L,L], and the defect stays within distance less than �lα′/α
1 � from −L (resp. L), we

still set I
(1)
j = Ĩ

(1)
j and say that G(I

(1)
j ) occurs.

(4) We set I
(1)
j = Ĩ

(1)
j if Ĩ

(1)
j was not involved in the previous adjustment, and say that

G(I
(1)
j ), H(I

(1)
j ), B(I

(1)
j ) occurs if, accordingly, G(Ĩ

(1)
j ), H(Ĩ

(1)
j ), B(Ĩ

(1)
j ) occurs.

To conclude this step, we re-numerate the intervals from left to right as I
(1)
j j = 1, . . . . If

we are still left with intervals I
(1)
j for which H(I

(1)
j ) occurs and its defected 0-block stays

within distance �lα′/α
1 � from the boundary of I

(1)
j , we repeat the above procedure to the

intervals already adjusted in the previous step. After finitely many steps of such adjustment
procedure there are left no intervals I

(1)
j for which the event H(I

(1)
j ) occurs and its defected

0-block stays within distance �lα′/α
1 � from the boundary, and the adjustment procedure is

then stopped. (Of course, due to item 3, the left- or rightmost intervals can stay with a
unique defect, if this is close enough to −L or L respectively.)

Remark Notice that the adjustment procedure is well defined, i.e. the final partition does not
depend on the order in which we do adjustments and in which order we pick the intervals that
still need to be adjusted (in case we have more than one). It also has a locality property, i.e.
the final modification of each initial interval Ĩ

(1)
j depends on the values of the configuration

in the nearest neighbor and, at most, in the next nearest neighbor intervals only.

Once the adjustment is completed, the obtained intervals, always re-numerated from left
to right as I

(1)
j , j = 1, . . . , are called 1-blocks. Notice that l1 − 2�lα′/α

1 � ≤ |I (1)
j | ≤ 3l1, and⋃

j I
(1)
j = [−L,L].

In other words, the restriction of ω to nearest neighbor edges of [−L,L] determines
through the above procedure a random “partition” I (1)(ω) ≡ {I (1)

j (ω)}j of the interval
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[−L,L] into 1-blocks, with the property that any two adjacent blocks share an end-vertex.
This is the final state of the “adjustment” procedure. Values of ω on the nearest neighbor
edges in [−L,L] also determine where the defected 0-blocks are located within each 1-
block, and we denote by D

(1)
j (ω) the set of indices of the defected 0-blocks within I

(1)
j (ω),

and D(1)(ω) ≡ {D(1)
j (ω)}j . The random object J

(1)
L := {I (1)

j ,D
(1)
j } is called itinerary at level

1 or 1-itinerary.

1-Pedestals Given the 1-itinerary J
(1)
L , we shall attribute to each random block I

(1)
j a state

G or B . We first consider the case that I
(1)
j is not the leftmost (i.e. j �= 1) nor the rightmost

1-block, to be treated at the end. When D
(1)
j = ∅, so that all nearest neighbor edges are open,

we say that I
(1)
j is in state G, and we define the pedestal ϒ(I

(1)
j ) = I

(1)
j . When |D(1)

j | = 1, the

set of vertices x ∈ I
(1)
j to the left (resp. right) of the defected 0-block in I

(1)
j will be called

left 1-pedestal of I
(1)
j (resp. right 1-pedestal) and denoted by ϒL(I

(1)
j ) (resp. ϒR(I

(1)
j )). The

vertices in each of these 1-pedestals are connected by open nearest neighbor edges. In this
situation we say that I

(1)
j is in state G when the following event occurs:

[ω : ∃x ∈ ϒL(I
(1)
j (ω)), y ∈ ϒR(I

(1)
j (ω)), 1 < y − x ≤ �lα′/α

1 � : ω{x,y} = 1], (2.2)

and otherwise we say that I
(1)
j is in state B . Similarly, if |D(1)

j | > 1 the block I
(1)
j is in

state B .
For the leftmost (rightmost) 1-block, there is some little difference: In the case |D(1)

j | = 1

and if the unique defected 0-block stays within distance �lα′/α
1 � from −L (L), the block is

said to be in state G, and the pedestal is defined as the previously defined right 1-pedestal
(left 1-pedestal, resp.), ϒ(I

(1)

1 ) = ϒR(I
(1)

1 ) (ϒ(I
(1)
j ) = ϒL(I

(1)
j ), resp.). Except for this, the

definition goes as with the other blocks.
With a little abuse of notation we use again the symbols G(I

(1)
j ) and B(I

(1)
j ) to denote

that I
(1)
j is in state G and B respectively. We say that I

(1)
j (ω) is defected if and only if it is

in state B .
In (2.2), if the pair (x, y) such that x ∈ ϒL(I

(1)
j ), y ∈ ϒR(I

(1)
j ), y − x ≤ �lα′/α

1 �, ω{x,y} =
1 is not unique, we choose one in arbitrary way, and, once the pair (x, y) is chosen, the
interval [x + 1, y − 1] will be called defected part of I

(1)
j , and denoted by D(I

(1)
j ). In this

case we define ϒ(I
(1)
j ) = (ϒL(I

(1)
j ) ∪ ϒR(I

(1)
j )) \ D(I

(1)
j ).

In particular, a 1-pedestal ϒ(I
(1)
j ) is given by the vertices of an open oriented path with

all edges, except possibly one, being nearest neighbor, and this larger edge has length at
most �lα′/α

1 �. For each 1-block, except possibly the two which contain the extremes −L or
L, the pedestal connects left and right endpoints of the interval. In the leftmost (rightmost)
case, it is allowed for the 1-pedestal to start (end) at a vertex within distance �lα′/α

1 � + 1 of
−L (L respectively).

Level k Let 2 ≤ k ≤ M . Assume to have completed the step (k − 1) of the recursion. In
particular, for each ω ∈ �L and any r = 1, . . . , k − 1 the following objects are defined:

• the collection of r-blocks I (r)(ω) = {I (r)
j (ω)}j , such that

⋃
j I

(r)
j (ω) = [−L,L], and any

two adjacent intervals share exactly an endpoint. Moreover, the uniform bound holds:

lr − (2�lα′/α
r � + 6lr−1) < |I (r)

j (ω)| ≤ 3lr + 6lr−1, (2.3)
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Fig. 1 Adjustments: part (a) shows the deterministic 1-blocks Ĩ
(1)
j

, bold-face segments show location of the

defects. Part (b) shows how these blocks were adjusted. Ĩ
(1)
5 and Ĩ

(1)
6 , merge into a single 1-block I

(1)
5

• each of the I
(r)
j (ω) can be in two possible states G or B:

If I
(r)
j (ω) is in state G and it is not the leftmost or the rightmost interval of the partition,

then ω has an r-pedestal ϒ(I
(r)
j ) given by vertices of an open oriented path from the left

to the right boundary of I
(r)
j (ω). If I

(r)
j (ω) is the leftmost (resp. the rightmost) interval,

an r-pedestal ϒ(I
(r)
j ) is given by vertices of an open oriented path which starts from

some vertex x ∈ [−L,−L + 2�lα′/α
r �] and ends at the right boundary of I

(r)
j (ω) (resp.

starts from the left boundary of I
(r)
j (ω) and ends at some vertex x ∈ [L − 2�lα′/α

r �,L]).
(l1 being large, we may assume that the length of an (r − 1)-block is always bounded
above by �lα′/α

r �, according to (2.3) for r replaced by r − 1.)
• the collection D(r)(ω) = {D(r)

j (ω)}j , where D
(r)
j (ω) is the set of labels of the defected

(r − 1)-blocks which are contained in I
(r)
j (ω).

For ω fixed, the sequence of pairs

J
(k−1)
L (ω) = {(I (1)(ω),D(1)(ω)), . . . , (I (k−1)(ω),D(k−1)(ω))},

is called (k − 1)-itinerary, and (I (r),D(r)), is called the r-th step of the itinerary, for 1 ≤
r ≤ k − 1. We shall now see how to define the k-blocks and the continuation to a k-itinerary.
When k = M we will end up with only one or two intervals.

Construction of k-blocks For any ω and for each z ∈ [−L,L] we set jk
z = min{j : z ∈

I
(k−1)
j }, ĵ k

i = jk

x
(k)
i

, cf. notation at the beginning of this section, i = −lM/lk, . . . , lM/lk − 1,

and define the intervals:

Ĩ
(k)
i =

ĵ k
i+1⋃

s=ĵ k
i
+1

I (k−1)
s =: [a(k)

i , a
(k)

i+1]

as well as the following partition of �L:

G(Ĩ
(k)
i ) =

ĵ k
i+1⋂

s=ĵ k
i
+1

G(I (k−1)
s ),

Hs(Ĩ
(k)
i ) = B(I (k−1)

s ) ∩
ĵ k
i+1⋂

u=ĵ k
i
+1,u�=s

G(I (k−1)
u ), (2.4)
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H(Ĩ
(k)
i ) =

ĵ k
i+1⋃

s=ĵ k
i
+1

Hs(Ĩ
(k)
i ),

B(Ĩ
(k)
i ) = �L \

(
G(Ĩ

(k)
i ) ∪ H(Ĩ

(k)
i )

)
.

Adjustment Given ω ∈ �L, consider all i for which Hs(Ĩ
(k)
i ) occurs for s such that the

distance of the defected (k − 1)-block I (k−1)
s ⊂ Ĩ

(k)
i to the left endpoint a

(k)
i (right endpoint

a
(k)

i+1, resp.) is less than �lα′/α
k �. If this set is non-empty take arbitrarily any such Ĩ

(k)
i .

When the selected Ĩ
(k)
i is the leftmost (resp. the rightmost) interval in [−L,L], and the

defect stays at distance less than �lα′/α
k � from −L (resp. L), we set I

(k)
i = Ĩ

(k)
i , and say that

G(I
(k)
i ) occurs (or that I

(k)
i is in G state for this ω). Otherwise, we then check if Ĩ

(k)

i−1 (resp.

Ĩ
(k)

i+1) has a defected block I (k−1)
r at distance at most 3�lα′/α

k � from a
(k)
i (resp. from a

(k)

i+1), and

(1) If yes, then we consider a new interval I
(k)

i−1 = Ĩ
(k)

i−1 ∪ Ĩ
(k)
i (respectively I

(k)
i = Ĩ

(k)
i ∪ Ĩ

(k)

i+1)

and say that B(I
(k)

i−1) (resp. B(I
(k)
i )) occurs, or that the corresponding interval is in state B;

(2) If not, then we consider two new intervals:

I
(k)

i−1 =
jk

a
(k)
i

−l
α′/α
k

−1⋃
s=ĵ k

i−1+1

I (k−1)
s , I

(k)
i =

ĵ k
i+1⋃

s=jk

a
(k)
i

−l
α′/α
k

I (k−1)
s (2.5)

(
respectively, I

(k)
i =

jk

a
(k)
i+1+l

α′/α
k⋃

s=ĵ k
i
+1

I (k−1)
s , I

(k)

i+1 =
ĵ k
i+2⋃

s=jk

a
(k)
i+1+l

α′/α
k

+1

I (k−1)
s

)
. (2.6)

In the situation of (2.5) we say that H(I
(k)
i ) occurs, and say that G(I

(k)

i−1), H(I
(k)

i−1), B(I
(k)

i−1)

occurs according to the occurrence of the corresponding G(Ĩ
(k)

i−1), H(Ĩ
(k)

i−1), B(Ĩ
(k)

i−1) (resp.

in the situation of (2.6) we say that H(I
(k)

i−1) occurs, and say that G(I
(k)

i+1), H(I
(k)

i+1), B(I
(k)

i+1)

occurs according to the occurrence of G(Ĩ
(k)

i+1), H(Ĩ
(k)

i+1), B(Ĩ
(k)

i+1)).

Finally we set I
(k)
i = Ĩ

(k)
i if Ĩ

(k)
i was not involved in the adjustment and say G(I

(k)
i ),

H(I
(k)
i ), B(I

(k)
i ) occurs if the corresponding G(Ĩ

(k)
i ), H(Ĩ

(k)
i ), B(Ĩ

(k)
i ) does occur.

To conclude this step, we re-numerate the intervals from left to right as I
(k)
j j = 1, . . . . If

after this step we are still left with intervals I
(k)
i for which H(I

(k)
i ) occurs and its defected

interval I (k−1)
s stays within distance �lα′/α

k � from one of the endpoints of I
(k)
i , then we repeat

the above procedure. After finitely many steps of this adjustment procedure all I
(k)
i for which

H(I
(k)
i ) occurs have their defected (k − 1)-block at distance larger than �lα′/α

k � from the
boundary of I

(k)
i .

Once the adjustments are completed, the final intervals, always re-numerated from left to
right as I

(k)
j , j = 1, . . . , are called k-blocks. We then consider the collection D(k) = {D(k)

j }j

where D
(k)
j gives the labels of the defected (k − 1)-blocks contained in I

(k)
j .
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We can always write I
(k)
j = ⋃s1(j)

s0(j) I
(k−1)
s . It is easy to check that the procedure is well

defined (measurable) and the validity of the following recursive estimate:

lk − (2�lα′/α
k � + 6lk−1) < |I (k)

j | ≤ 3lk + 6lk−1. (2.7)

k-Pedestals Given the k-itinerary we shall associate to each k-block I
(k)
j (ω) a state G or

B , and the blocks in state G will have a k-pedestal, to be defined below. When |D(k)
j (ω)| ≥ 2,

the block is said to be in state B , and it has no k-pedestal.

• When D(I
(k)
j ) = ∅, all its sub-blocks I (k−1)

s are in state G. In this case we define ϒ(I
(k)
j ) =⋃s1(j)

s0(j) ϒ(I (k−1)
s ).

• If D(I
(k)
j ) = {r} and I

(k)
j is not the leftmost (resp. rightmost) interval in [−L,L], we

define ϒL(I
(k)
j ) = ⋃r−1

s0(j) ϒ(I (k−1)
s ) and ϒR(I

(k)
j ) = ⋃s1(j)

r+1 ϒ(I (k−1)
s ), called left and right

pedestals5 of I
(k)
j , and check if there exists x ∈ ϒL(I

(k)
j ) and y ∈ ϒR(I

(k)
j ) with y − x ≤

�lα′/α
k � such that ω{x,y} = 1:

– If yes, we say that I
(k)
j is in state G, and if the pair (x, y) with x ∈ ϒL(I

(k)
j ), y ∈

ϒR(I
(k)
j ), y − x ≤ �lα′/α

k �, and ω{x,y} = 1 is not unique, we choose one in an arbitrary

way, and, once (x, y) is chosen, denote D(I
(k)
j ) = [x + 1, y − 1], and define

ϒ(I
(k)
j ) =

(
ϒL(I

(k)
j ) ∪ ϒR(I

(k)
j )

)
\ D(I

(k)
j ).

– If such an open edge {x, y} does not exist we say that I
(k)
j is in B state.

• If |D(I
(k)
j )| = 1 and I

(k)
j is the leftmost (resp. rightmost) interval in [−L,L] whose unique

defected (k − 1)-block I (k−1)
r stays within distance �lα′/α

k � from −L (resp. L), then we
say that I

(k)
j is in state G and we define its k-pedestal as ϒ(I

(k)
j ) = ⋃s1(j)

r+1 ϒ(I (k−1)
s ) (resp.

ϒ(I
(k)
j ) = ⋃r−1

s0(j) ϒ(I (k−1)
s )).

• Finally, if |D(I
(k)
j )| = 1 and I

(k)
j is the leftmost (resp. rightmost) interval in [−L,L], but

its unique defected (k − 1)-block I (k−1)
r does not stay within distance �lα′/α

k � from −L

(resp. L), then we use the same procedure as if I
(k)
j were not an extremal k-block.

This completes the k-th step, associating with each itinerary J (k−1) its continuation with
a random sequence of k-blocks I (k) = {I (k)

j }j , re-numerated from left to right. Moreover,
with each k-block we associate one of the states G or B .

Structure of Pedestals First we state a simple geometric property of pedestals, which will
be used in estimating the conditional probability that a k-block I

(k)
j is in state G, given that

|D(k)
j | = 1. Our goal is to show that there exists a positive constant C ≡ C(α,α′) such that

if a k-block, k ≥ 1, I (k) = [s, s ′] contains only one defected (k − 1)-block, here denoted by

5From the occurrence of G(I
(k−1)
s ) for all other (k − 1)-blocks within I

(k)
j

, we know there exists an open

oriented path connecting the left boundary of I
(k)
j

to the right boundary of I
(k−1)
r−1 and an open oriented

path connecting the left boundary of I
(k−1)
r+1 to the right boundary of I

(k)
j

. These paths are obtained by

concatenation of the corresponding ϒ(I
(k−1)
s ), s0(j) ≤ s ≤ r − 1 and r + 1 ≤ s ≤ s1(j), respectively.
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Fig. 2 Pedestals and defects: part (a) shows the deterministic 1-blocks I
(1)
i

, 1 ≤ i ≤ 10, located in the

2-block I
(2)
j

; bold-face segments show location of the 0-defects. Part (b) shows construction of 1-pedestals,

marked by light-gray strips. The block I
(1)
6 is a defected 1-block. The segments (xi , yi ) are “enlarged” defects

in I
(1)
i

. Part (c) shows creation of 2-pedestals, marked by dark-gray strips, concatenated by long range edges.

The segment (xj , yj ) is the enlarged defect for I
(2)
j

[a, a′], with corresponding left and right pedestals ϒL and ϒR, spanning from s to a and
from a′ to s ′, respectively, then

∣∣∣ϒL ∩ [a − �lα′/α
k �, a]

∣∣∣ ≥ Cl
α′/α
k and

∣∣∣ϒR ∩ [a′, a′ + �lα′/α
k �]

∣∣∣ ≥ Cl
α′/α
k . (2.8)

Inequality (2.8) follows trivially from the following recursive relation: if we have a k-block
I (k) = ⋃s1

s0
I (k−1)
s which is in G state, then

∣∣ϒ(I (k))
∣∣ ≥

∑
s : [G(I

(k−1)
s )occurs]

∣∣ϒ(I (k−1)
s )

∣∣ − l
α′/α
k .

We now give the announced basic estimate needed for the recursive step in the previous
construction, cf. (1.8). Afterwards, we fix the parameters which will determine the choice of
p close to one, as in (1.6). In the lemma below, assume that I

(k)
j is a k-block and D

(k)
j = {z},

i.e. the unique defected (k − 1)-block within I
(k)
j has index z, and by construction stays at

distance larger than �lα′/α
k � from the boundaries of I

(k)
j .

Lemma 2.1 There exists η ≡ η(α,α′, l1) with η ↘ 0 as l1 ↗ +∞ and such that the fol-
lowing estimate for the conditional probability with respect to the product measure (defined
right above (1.1))

ν
[∃x ∈ ϒL(I

(k)
j ), y ∈ ϒR(I

(k)
j ), y − x

≤ �lα′/α
k � : ω{x,y} = 1

∣∣|D(k)
j | = 1

] ≥ 1 − l
−β(1−η)(α′−1)

k−1 (2.9)

holds for k ≥ 2. For k = 1 the r.h.s in (2.9) is replaced by 1 − l
−β(1−η)(α′−1)/α

1 .
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Proof We show the above estimate by conditioning on D
(k)
j = {z}, uniformly in z, and we

make repeated use of the following upper and lower bounds: if I and I ′ are two intervals,
and 3 ≤ d = dist(I, I ′), then

C− J (I, I ′) ≤
∑

x∈I∩Z

y∈I ′∩Z

1

|x − y|2 ≤ C+ J (I, I ′), (2.10)

holds with C± = (1 ± 2/d)2 and

J (I, I ′) =
∫

I×I ′
dx dy

1

|x − y|2 = ln
(|I | + d)(|I ′| + d)

d (|I | + |I ′| + d)
. (2.11)

Notice that we have C− (|x − y| − 2)−2 ≤ |x − y|−2 ≤ C+ (|x − y| + 2)−2 for |x − y| ≥ d .
We shall need also the inequality

J (I, I ′) ≤ 4

∣∣I ′∣∣
|I ′′|J

(
I, I ′′) (2.12)

which holds for every I , I ′ and I ′′ such that I ′ ⊂ I ′′ and d ′ = dist(I, I ′′) ≥ |I ′′|. Indeed,
setting f (x) = ∫

I
dy |x − y|−2, for x ∈ I ′′, straightforward calculations give that under the

above conditions:

f (x ′) ≤ 4f (x ′′) for each x ′ ∈ I ′, x ′′ ∈ I ′′

from where the inequality (2.12) follows upon integration.
If k ≥ 2 and D

(k)
j = {z}, we have the left k-pedestal ϒL(I

(k)
j ) spanning from the left

endpoint of I
(k)
j to the left endpoint of I (k−1)

z , and the right k-pedestal ϒR(I
(k)
j ), spanning

from the right endpoint of I (k−1)
z to the right endpoint of I

(k)
j . Take two segments SL

z and

SR
z , such that |SL

z | = |SR
z | = ��lα′/α

k �/3�, lying immediately to the left and, respectively, to
the right of I (k−1)

z . Denote

ϒ̂L(I
(k)
j ) = ϒL(I

(k)
j ) ∩ SL

z ,

ϒ̂R(I
(k)
j ) = ϒR(I

(k)
j ) ∩ SR

z .

Then

ν[all edges {x, y}, x ∈ ϒ̂L(I
(k)
j ), y ∈ ϒ̂R(I

(k)
j ) are closed|D(k)

j = {z}]
≤

∏
x∈SL

z

y∈SR
z

q{x,y}
∏

x∈SL
z \ϒ̂L(I

(k)
j

)

y∈SR
z

q−1
{x,y}

∏
x∈SL

z

y∈SR
z \ϒ̂R(I

(k)
j

)

q−1
{x,y}. (2.13)

Applying (2.10) to SL
z and SR

z we immediately get the following bound:

∏
x∈SL

z

y∈SR
z

q{x,y} = exp

{
−

∑
x∈SL

z

y∈SR
z

β

|x − y|2
}

≤ l
−β(α′−1)(1−b)

k−1 , (2.14)
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where b ≡ b(α′, l1) and b ↘ 0 when l1 ↗ +∞. Similar computation gives that if a 1-block
I has a unique closed edge {a, a + 1} with both a, a + 1 at distance larger than l

α′/α
1 from

the endpoints of I , then the probability that there is an open edge {x, y} with x < a < y,
y − x ≤ l

α′/α
1 is larger than or equal of 1 − l

−β(1−η)(α′−1)/α

1 .
On the other hand denoting by Dn(S

L
z \ ϒ̂L(I

(k)
j )), 0 ≤ n ≤ k − 2 (resp. Dn(S

R
z \

ϒ̂R(I
(k)
j ))) the set of vertices that belong to all defected n-blocks contained in the segment

SL
z (resp. SR

z ), we get

∏
x∈SL

z \ϒ̂L(I
(k)
j

)

y∈SR
z

q{x,y} =
k−2∏
n=0

∏
x∈Dn(SL

z \ϒ̂L(I
(k)
j

))

y∈SR
z

q{x,y}

= exp

{
−

k−2∑
n=0

∑
x∈Dn(SL

z \ϒ̂L(I
(k)
j

))

y∈SR
z

β

|x − y|2
}

.

Once again, applying (2.10) for each 0 ≤ n ≤ k − 2 and taking into account the structure of
n-pedestals together with (2.12), we have (uniformly on all l1 large enough) fixed positive
constants Ci, i = 1,2,3 so that

k−2∑
n=0

∑
x∈Dn(SL

z \ϒ̂L(I
(k)
j

))

y∈SR
z

β

|x − y|2 ≤ C1

k−2∑
n=0

∑
ν

J
(
I ′
ν, I

R)

≤ C2

k−2∑
n=0

l
α′/α
n+1

ln+1

∑
ν

J
(
I ′′
ν , I R)

≤ C3l
α′/α−1
1 J

(
I L, I R)

where I ′
ν and I ′′

ν are intervals in R so that
⋃

ν(I
′
ν ∩ Z) = Dn(S

L
z \ ϒ̂L(I

(k)
j )), the sum

∑
ν

is taken over all indices ν of (n + 1)-blocks I (n+1)
ν =: I ′′

ν ∩ Z where the defected n-blocks
are located, and moreover, I L = ⋃

0≤n≤k−2

⋃
ν I ′′

ν and I R is the convex envelop of SR
z . The

condition to apply (2.12) in the first inequality above follows from 3lk−1 + 6lk−2 ≤ l
α′/α
k

which is true for any k ≥ 2, provided l1 has been taken large enough. From this we can
easily get that ∏

x∈SL
z \ϒ̂L(I

(k)
j

)

y∈SR
z

q{x,y} ≥ l
−β(α′−1)b′
k−1 , (2.15)

where b′ ≡ b′(α,α′, l1) and b′ ↘ 0 when l1 ↗ +∞. Analogous lower bound holds for the
third term at the r.h.s of (2.13). Finally, from the upper bound for the length of a (k − 1)-
block, we have

[ω : ∃x ∈ ϒL(I
(k)
j ), y ∈ ϒR(I

(k)
j ), y − x ≤ �lα′/α

k � : ω{x,y} = 1]c
⊆ [all edges {x, y}, x ∈ ϒ̂L(I

(k)
j ), y ∈ ϒ̂R(I

(k)
j ) are closed], (2.16)

the statement of the Lemma follows from (2.14) and (2.15). �
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Fixing the Parameters For fixed β > 1, which is the first main parameter of the model we
choose the pair α, α′ with 1 < α′ < α < 2 such that

β(α′ − 1) − 2(α − 1)2

2 − α
> α − 1, (2.17)

i.e. β(α′ − 1) > α (α − 1) /(2 − α). We also fix

δ >
2(α − 1)

2 − α
(2.18)

such that

β(α′ − 1) − δ(α − 1) > α − 1. (2.19)

By Lemma 2.1 we can fix l1 > 1 so large that the parameter η = η(α,α′, l1) in (2.9) becomes
so close to zero, that

β(1 − η)(α′ − 1) − δ(α − 1) > α − 1. (2.20)

Inequalities (2.9), (2.18) and (2.20) are crucial for the inductive estimates.

Cluster of the Origin From the above estimates, and recalling (2.7), the initial heuristic
discussion is indeed made rigorous: for the above choice of parameters and picking l1 large
enough we (recursively) obtain that for all M ≥ 1 and at all scales k = 1, . . . ,M ,

ν(I
(k)
j is defected ) ≤ l−δ

k . (2.21)

Indeed, due to (2.7), we see that the previous analysis and the above choice of the parameters
turns rigorous the discussion leading to (1.7) and (1.9). Now, for k = M , we have at most two
M-blocks, denoted by I

(M)
i , where 1 ≤ i ≤ s and s(ω) ∈ {1,2}. In particular, from (2.21),

we immediately have the basic estimate (1.4) announced in the introduction. Next we give
the uniform lower bound for

ν
(

0 � y, for some y ∈ [
L − 2�lα′/α

M �,L])
.

Recalling that jk
z = min{j : z ∈ I

(k−1)
j }, for any 1 ≤ k ≤ M we define the following

events:

ψ(k) =
jk

0 +��lα′/α
k

�/lk−1�⋂
i=jk

0 −��lα′/α
k

�/lk−1�
G(I

(k−1)
i ) (2.22)

and consider

�M =
M⋂

j=1

ψ(j). (2.23)

The occurrence of
⋂n

k=1 ψ(k), 1 ≤ n ≤ M implies that the origin 0 is the right (resp. left)
end-vertex of a (n − 1)-block I

(n−1)

jn
0

(resp. I
(n−1)

jn
0 +1 ) for each n, since no adjustments are per-

formed in this case, and necessarily it belongs to the pedestals ϒ(I
(n−1)

jn
0

) and ϒ(I
(n−1)

jn
0 +1 )
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for any 1 ≤ n ≤ M . In particular, for ω ∈ �M we have s(ω) = 2. Moreover, in the
event �M ∩ G(I

(M)

1 ) ∩ G(I
(M)

2 ), the origin 0 belongs to an open oriented path connecting

[−L,−L + 2�lα′/α
M �] to [L − 2�lα′/α

M �,L] as described above.
Taking into account the estimate (2.21) and the definition (2.22) we have for k ≥ 2:

ν(ψ(k)) ≥ 1 − (2(lk−1)
α′−1 + 1)(lk−1)

−δ ≥ 1 − 3(lk−1)
α′−1(lk−1)

−δ.

Since

δ − (α′ − 1) > δ − (α − 1) ≥ α(α − 1)

2 − α
> 0,

we define u = δ − (α′ − 1) > 0 and rewrite the above inequality:

ν(ψ(k)) ≥ 1 − 3(lk−1)
−u for k ≥ 2.

Since lk grow super-exponentially fast, we get immediately that the series

(l1)
−u + (l2)

−u + (l3)
−u + · · · = S(l1)

converges and

S(l1) −→ 0, when l1 → ∞.

This immediately implies that

ν

([
M⋂

j=2

ψ(j) ∩ G(IM
1 ) ∩ G(IM

2 )

]c)
(2.24)

can be made arbitrarily small, uniformly in M .
Finally, by choosing l1 large enough, and then p close enough to 1 we get that ν(ψ(1)) can
be made arbitrarily close to 1.
The proof of Theorem 1.1 follows at once. �
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